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Figure 1: A single-step table setting task. Left: a person gives a single context example, which consists of an initial state, a set of
objects, and a final state. From this final state, you can see the person likes red utensils placed according to traditional Western
table setting rules. Right: an assistive robot uses this example to generalize this preference to different sets of objects, such as
babyforks and spoons, and place them appropriately on the table.

ABSTRACT
Robots should adhere to personal preferences when performing
household tasks. Many household tasks can be posed asmulti-object
rearrangement tasks, but solutions to these problems often target
a single, hand defined solution or are trained to match a solution
drawn from a distribution of human demonstrated data. In this
work, we consider using an internet-scale pre-trained vision-and-
language foundation model as the backbone of a robot policy for
producing personalized task plans to solve household multi-object
rearrangement tasks. We present initial results on a one-step table
setting task that shows a proof-of-concept for this method.
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1 INTRODUCTION
Assistive robots operating in people’s homes should complete tasks
in ways that align with their personal preferences [22]. These pref-
erences are highly subjective, and can be abstract or eccentric. We
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fork babyfork spoon
fork 0.986 ± 0.03 0.929 ± 0.06 0.914 ± 0.07

babyfork 0.814 ± 0.09 0.886 ± 0.08 0.986 ± 0.03
spoon 0.943 ± 0.06 0.986 ± 0.03 0.986 ± 0.03

Table 1: Color Selection Accuracy. Context objects are
shown in the rows, while Prompting objects are shown
in the columns. Error is reported as 95% confidence bound.

fork babyfork spoon
fork 0.986 ± 0.03 0.986 ± 0.03 0.929 ± 0.06

babyfork 0.986 ± 0.03 0.987 ± 0.03 0.7 ± 0.11
spoon 0.943 ± 0.06 0 ± 0.00 0.986 ± 0.03

Table 2: Location Selection Accuracy. Context objects are
shown in the rows, while Prompting objects are shown in
the columns. Error is reported as 95% confidence bound.

aim to develop a generalizable planning approach for preference-
aligned multi-object rearrangement.

Prior research on personalized household object rearrangement
collects task-specific datasets of simulated or human demonstra-
tions and tries tomatching preferences presentwithin this dataset [1,
15, 16, 23]. However, curating large datasets of human demonstra-
tions with diverse preferences is challenging. The space of possible
preferences is effectively unbounded. Preferences are highly sub-
jective and depends on the physical and mental qualities of the
individual. Thus collecting a dataset representative of all user pref-
erences is challenging.

Furthermore, these preferences can be complex and abstract. For
example, someone’s preferred table-top setting might be grounded
in accessibility, visual aesthetics or cultural and traditional rules.
Hence learning or modelling these preferences in a generalizable
fashion is non-trivial. Finally, preferences are often underspecified.
A command such as “Help me set the table for dinner” is commonly
issued, but does not indicate that a person prefers to use ceramic
dishes for everyone except their child whose place should be set
with silicone. Exhaustively and explicitly communicating such pref-
erences in operationalizable ways can be tedious and require precise
language that is difficult for people to produce.

We wish to develop a method for generalizable personalized
household rearrangement that 1) has low sample complexity 2)
is able to model abstract and complex preferences about object
rearrangement, and 3) develop these task plans even with under
specified instructions.

Recent advances into vision-and-language foundation models
(VLMs) provide solutions to all three of these issues. Large-language
models (LLMs) and VLMs pretrained on internet scale data have
been shown to effectively solve myriad tasks for which they weren’t
explicitly trained. Specifically, combining LLMs with in-context
learning [3] has made tremendous strides in developing task plans
that solve general multi-object rearrangement tasks and in solving
these tasks according to easily specified human preferences [32] in
a few shots.

We present an initial method that takes advantage of these recent
advancements in internet-scale pretrained VLMs in order to solve
multi-object rearrangement tasks according to personal preferences,
even when those preferences are not fully specified. We present
the initial results of this method on a single-step table setting task
and find proof-of-concept for our method.

2 RELATEDWORKS
Foundation Models for Robotics: VLMs pre-trained on large
scale datasets have shown commonsense reasoning abilities. Re-
searchers have leveraged these abilities to perform planning and
control for robotics [8, 10]. Many prior works [2, 12, 13, 18–20, 24,
28, 30, 31, 35] have used pre-trained LLMs to generate actionable
natural language plans for robots. VLMs have also been used to
generate subgoals for navigation [4, 6, 9, 11, 25, 26] and manipu-
lation [5, 27] tasks. Additionally, prior works have also leveraged
LLMs to directly generate low-level executable policy code for
robots [17, 29]. Another line of works, has also used LLMs to gen-
erate rewards, which can be for RL [14, 21, 34]. In our work, we
use a VLM to generate the policy code to accomplish a continuous
preference aligned novel goal state.

3 METHOD
We seek a robot policy 𝜋 to solve a multi-object rearrangement
tasks. We query the policy with an initial language instruction 𝑙0
to ground the task, a context variable 𝑐 that gives 𝑁 examples of a
completed task that implicitly defines a person’s preference, and
a prompt, 𝑝 , which is an example of an incomplete task that the
policy must solve.

The context and prompt are both comprised of both image and
language inputs. For each example in the context, we provide an
image of the initial state, 𝑠0, an image of a set of context objects
𝑂𝑐 overlaid with spatial reference marks (which have been shown
to improve a foundation model’s object detection capabilities [33])
and an image of the state after the desired action is performed 𝑠1.
We also provide a code file 𝑙1 that uses information from these
images and preprogrammed robot actions to solve each example in
the context 𝑐 = [𝑠0,𝑂𝑐 , 𝑠1, 𝑙1]. A prompt 𝑝 is similar to an example
from the code, but contains a different set of objects 𝑂𝑐 , does not
include 𝑠1, and contains a partial code file 𝑙2 that must be completed
by the policy, e.g. 𝑝 =

[
𝑠0,𝑂𝑝 , 𝑙2

]
.

We parameterize our policy as a vision-and-language model,
specifically GPT4-V [7], and test it in initial experiments. We de-
velop a small dataset of four household objects commonly used in
table setting: plate, fork, spoon, baby fork. The plate is present in
all initial states. Each of the fork, spoon and baby fork and take on
one of seven different colors: white, red, black, yellow, green, blue,
purple.

4 INITIAL RESULTS
To test our method, we give develop a single-step object rearrange-
ment task. Each experiment consists of two context examples that
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contain prior placements for the context objects. The context implic-
itly encode two preferences: the preferred location of the context
object, and the preferred context object color. Using this context,
the policy should be able to select the appropriate placement and
color of a new object in a new table setting. We test the full combi-
nation of objects and colors being provided in either the context
or prompt, for a total of 63 experiments. This is akin to asking the
question: “If I like red forks placed to the left of the place, how do I
like to place red spoons?”, for each combination of color, context,
and prompting objects. We run each experiment ten times. We re-
port color selection and location selection accuracy, broken down
by context object and prompt object in Tables 1 and 2, respectively.

These results show a few interesting trends. First, our method
exceeds chance in both color (0.14) and location (0.50) selection
in all tasks except for predicting the placement of the babyfork
from the placement of the spoon. This is likely due to two factors:
the tines of the babyfork are wider than those of a normal fork,
giving it a more spoon-like appearance, and that the placement
of the babyfork is not as strictly bound by traditional Western
table-setting decorum as the other objects in this dataset.

5 CONCLUSION AND FUTUREWORK
In this work we present a novel use case for VLMs: using them for
assistive human robot collaboration in multi-object rearrangement
tasks. We show initial results on a single-step table setting task,
which we believe show a proof-of-concept for the current direction.
We plan to extend this to multi-step table setting scenarios, and
expand the scope of the types of preferences present in our dataset.
Finally, we plan to involve human data and perform rigorous testing
to determine how well all user preferences can be captured, as
opposed to only those that match the distribution of training data
well.
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