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ABSTRACT
Care documentation is an essential but time-consuming part of
nursing practices. We present a first prototype to support care
workers by generating summaries from audio recorded during
standard nursing interactions. The audio is transcribed with Au-
tomatic Speech Recognition (ASR), and a summary is generated
by a Large Language Model (LLM), both running locally. For eval-
uation, we recorded four mock care interaction scenarios with a
training manikin. We compare different local LLMs with GPT-3.5
and GPT-4. We find that most of the important topics relevant to
care documentation were present in the resulting summaries.
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1 INTRODUCTION
Robots in care are seen as a promising technology to alleviate the
workload of care workers in an aging society. However, robots are
hardly used in care facilities despite multiple research projects over
the last decade [15]. Reasons for the lack of robots in healthcare
are, among others, cost, perceived threats to professional roles,
absence of personal benefits of staff, technical limitations [26]. We
conducted 13 participatory design workshops in two residential
care homes with care workers and care recipients to investigate
how robotic technology can support care needs andmeet workplace
concerns. A dominant topic among care workers was the possibility
of robots to support documentation work [9].

We propose a documentation support system that records audio
of German nurse-patient dialogues during standard care interac-
tions with a wireless microphone worn by the caregiver. An LLM
generates a summary of essential information such as performed
care actions and the condition of care recipients (Figure 1). Due
to the sensitivity of the data, we investigate three state-of-the-art
offline models applicable to German: EM German [11], Mixtral [13]
and Sauerkraut-Mixtral [27]. The resulting text is presented to care
workers when they do their routine documentation. This approach
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Figure 1: Pipeline of the documentation support system.

was chosen to be frictionless and agnostic to documentation sys-
tems while maintaining the nurses’ agency and responsibility. By
using only a microphone, we follow recommendations by [26] to
first introduce the least disruptive application to showcase advan-
tages, reducing stakeholders’ resistance to innovation. In a later step,
this system is envisioned to be integrated into a multi-purpose care
robot that accompanies care workers. Our main contributions are:

• A pipeline to support care workers with documentation us-
ing local off-the-shelf ASR and LLMs.

• A qualitative evaluation of a documentation support proto-
type using data recorded with a training manikin.

• A comparison of three open-source and two proprietary
models for summarization of nurse-patient dialogues.

2 RELATEDWORK
Care documentation is essential to nursing practices to ensure qual-
ity and continuity of care [20], but is time-consuming, with studies
reporting between 25% and 41% of nurses’ working hours spent on
documentation [5, 24, 25, 29]. Multiple studies have been conducted
to introduce automatic documentation systems in healthcare set-
tings [7, 8]. Knoll et al. [14] conducted a user study on medical note
generation software from patient-doctor dialogues for telehealth
and refined the system introduced in [21] for real-time application.
Ben Abacha et al. [2] and Yim et al. [30] conducted two challenges
for generating medical notes from ASR transcribed doctor-patient
conversation with diarized speakers. For this task, multiple au-
thors found GPT-4 with in-context examples to outperform other
methods, such as fine-tuned T5 models, few-shot prompting, and
multi-stage prompting [10, 19, 28]. All these methods tackle doctor-
patient dialogues, which usually consist of very directed questions
to arrive at a diagnosis. In our use case, nurses talk to a patient
while performing care actions to describe what they are doing. The
dialogues often contain small talk that still includes useful infor-
mation for care documentation [18]. Additionally, doctors tend to
take notes during the conversation. Nurses write documentation
at a later point, after multiple care interactions. To the best of our
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knowledge, there is currently no attempt to extract care documen-
tation from nurse-patient dialogues during care actions using LLMs.
This includes different challenges compared to doctor-patient dia-
logues, such as detecting performed care actions, patient’s physical
condition, and mental state (e.g., feeling anxious, lonely, sad).

3 DOCUMENTATION SUPPORT SYSTEM
The documentation support system needs to handle German conver-
sations and run locally due to the sensitivity of the data. The audio is
recorded by a wireless Lavalier microphone worn by the caregiver,
which picks up the nurse-patient dialogue. The recording is tran-
scribed with WhisperX [1] using Whisper’s large-v3 model [23]
in a post-processing step. The transcription is not changed, and
no speaker diarization is performed as we found it unreliable. We
compare GPT-3.5 [4] and GPT-4 [22] to multiple models that adhere
to our limitations to run locally and support German:

• EMGerman [11]: a unilingual model based on Mistral7B [12]
and fine-tuned for German.

• Mixtral-8x7b-Instruct [13]: a multilingual Mixture of Experts
(MoE) model by MistralAI.

• Sauerkraut-Mixtral-8x7b-Instruct [27]: a variant of Mixtral
fine-tuned with German data.

4 EXPERIMENTS AND RESULTS
We recorded four staged care scenarios with the “Nursing Anne”
training manikin [16]. The manikin has a built-in speaker, which en-
abled a nurse in another room to perform the role of a care recipient.
The different scenarios involved body care, an accident, mobiliza-
tion, medication intake, and description of health conditions such
as pain and mood. Using a Lavalier microphone worn by the care
giver, we recorded the German nurse-patient dialogues. After each
care scenario, the researchers sat down with the participating care
workers for a semi-structured post-interview about how they would
document the nursing interaction. Based on the recordings and in-
terviews, three of the authors independently created mock care
documentation in two different formats (i.e., complete sentences
and bullet lists). We use the ROUGE-1 metric [17] for evaluation
similar to [2, 3]. All six human-generated summaries were used as
a reference pool for the evaluation, taking the top-scoring match
as described in [17]. Moreover, we report the percentage of core
topics that should be documented as identified by care workers in
post-interaction interviews. We used the same prompt for all mod-
els, which included a general system description, a transcript of the
patient-nurse dialogue, and the query (translated from German):
“Write a summary of the conversation as a list for the care documen-
tation. Pay particular attention to activities that were carried out, the
person’s condition, and possible discomfort. Answer in German!”

According to the ROUGE-1 score (Table 1), Mixtral seems to be
superior in most situations. However, this shows the imperfections
of the measure as described in [6] rather than indicating the supe-
rior model. ROUGE checks for the appearance of the exact words
between the generated summary and reference summaries instead
of semantic similarities. Additionally, it punishes longer summaries
that tend to be generated by GPT-3.5 and GPT-4. As another mea-
sure, we identified 24 relevant topics for the care documentation
over all scenarios from the care workers’ interviews and checked

Table 1: ROUGE-R1 scores for different models and the four
scenarios. Topics refers to the percentage of relevant topics
present in the summaries for each scenario (𝑆𝑁 ).

𝑆1 𝑆2 𝑆3 𝑆4 Avg. Topics

EM-German [11] .178 .217 .288 .164 .212 50.0%
Mixtral [13] .341 .341 .372 .196 .313 75.0%
SK-Mixtral [27] .216 .293 .335 .294 .284 83.3%

GPT-3.5 [4] .338 .207 .357 .242 .286 87.5%
GPT-4 [22] .243 .223 .307 .136 .227 87.5%

if they appeared in the generated summaries. GPT-3.5 and GPT-4
were superior in this measure, mentioning 21 of 24 (87.5%) relevant
topics in the created summaries, while Sauerkraut-Mixtral performs
best of the local LLMs with 83.3% (Table 1).

We discuss scenario 𝑆1 in more detail to showcase the differ-
ences between models. The interaction was a standard morning
routine, which lasted for ∼22minutes. The nurse-patient dialogue
during performing care actions included today’s planned visit of
the daughter, pain in different body parts, refusal to eat due to nau-
sea, and biographical information involving the resident’s life at a
farm. The care recipient repeated questions multiple times, which
could indicate dementia. From the interviews, we identified six
main topics that should go into the care documentation: daughter
visit, unlocatable pain, refusal to eat, nausea, limited movement
abilities, and impaired short-term memory. None of the models was
able to extract the impaired short-term memory from the conver-
sation. Both GPT variants and Sauerkraut-Mixtral have all other
topics in the summaries. Mixtral ommited the daughter visit. The
smaller EM-German model does not extract the topics of nausea
and refusal to eat. In scenario 𝑆2, the refusal to take medication was
only detected by the GPT models. All models output biographical
information, which were not mentioned as relevant topics in the
interviews, but are a specific subsection of care documentation in
the studied care home. Small changes of the prompt can change
the outputs and resulting scores significantly. In some cases, both
Mixtral variants output English text instead of German.

5 DISCUSSION AND FUTURE STEPS
We introduce a first prototype for automatic care documentation
generation from nurse-patient dialogues recorded during care in-
teractions. It shows promising results summarizing most of the
relevant topics for care documentation of staged care interactions
with a training manikin. However, we encountered high variability
in the quality of results depending on the specific prompt.

As a next step, we will record real dialogues of nurse-patient
care interactions in a residential care home and observe the ensu-
ing care documentation process. We plan to further refine the care
documentation support system with promising approaches such
as in-context examples, prompt optimization, multimodal models,
and multi-stage prompting to increase reliability and consistency.
Open challenges are privacy concerns, user interface design, care
recipients’ and nurses’ attitudes to the system (e.g., mistrust, over-
reliance, inconvenience). Another interesting aspect is that LLMs
could facilitate translation since many nurses do not have German
as their first language. We will involve care workers continuously
during the iterative development process.
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