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ABSTRACT
Previous research has demonstrated that robots can be effective
teaching aids, yet they lack the ability to understand and respond
to students’ speech in the way human teachers do. In this paper,
we introduce an innovative approach that utilizes Large Language
Models (LLMs) to enable more intelligent teaching robots, thereby
enhancing the learning experience. Initially, we explore the ca-
pability of LLMs to evaluate students’ learning progress through
their speech, surpassing traditional student progress models like
Bayesian Knowledge Tracing, which depend solely on the correct-
ness of students’ answers. We then proceed to discuss the second
phase, which involves comparing various mechanisms of using
LLMs to generate personalized feedback, and incorporating the
most appropriate one into the final framework.

CCS CONCEPTS
• Applied computing → E-learning; • Computing methodolo-
gies→ Natural language processing; Robotics; •Human-centered
computing → Interaction paradigms.
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1 INTRODUCTION AND MOTIVATION
Social robots have emerged as educational tools, acting as peers or
tutors to enhance student learning [3]. Although the effectiveness
of teaching robots has been confirmed [1, 2, 6, 9], they have not
yet achieved the capabilities of human teachers, such as continu-
ously monitoring student progress, interpreting speech, answering
queries, and providing personalized feedback. While research indi-
cates that encouraging students to verbalize their thoughts while
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answering questions can boost their learning gains [8], robots cur-
rently have a limited understanding of such speech and gauge their
progress subsequently.

Instead, teaching robots typically rely on user modelling frame-
works like Bayesian Knowledge Tracing (BKT) to track students
[4]. BKT predicts students’ likelihood of understanding the skill
necessary to answer a question. Variations of the BKT model have
also been proposed to achieve more personalized modeling [11].
However, such estimations overlook a crucial aspect: understanding
students’ verbal inputs. This gap is a significant difference between
human and robot teachers, where the latter lacks the capability to
provide explanations based on students’ verbal questions.

Large Language Models (LLMs), leveraging the transformer net-
work architecture proposed by [10], have shown remarkable ca-
pabilities in interpreting natural languages and offer the potential
to enhance the intelligence of teaching robots. In this paper, we
present our approach for integrating LLMs into teaching robots,
inspired by research indicating that encouraging students to ver-
balize their thoughts while solving problems can lead to increased
learning gains [8]. We refine this concept by employing LLMs to
analyze the textual data obtained from students’ spoken responses
after conversion by a speech-to-text module, thereby developing a
more precise model of student progress. Additionally, we employ
another LLM to generate personalized feedback, considering not
only the correctness of students’ answers but also the nuances of
their verbal responses.

2 PROPOSED FRAMEWORK
We are proposing two novel contributions using students’ speech
during tutoring. In other words, we utilize LLMs to a) create a
more accurate personalized model of the student using their speech
while learning; and b) generate feeback according to the students
personal learning needs.

2.1 LLMs for User Modeling
Traditional methods like BKT estimate skill mastery based solely
on answer correctness [4], but LLMs can enhance accuracy by
also considering students’ verbal inputs. These verbal inputs are
captured by encouraging students to think aloud while answering
questions, as explored by [8]. As illustrated in Figure 1 and inspired
by [7], LLM could assign a 0 to 10 score reflecting the likelihood of
skill comprehension. Inputs to LLM include the question, answer
options, correct answer, student’s choice, solution text, and the
student’s spoken responses, converted via speech-to-text. Such
predictions can then either be averaged with BKT’s prediction or
act as a direct substitution.
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Figure 1: The Implementation of LLMs. “LLM - Modeling",
as referenced in section 2.1, is utilized for user modeling.
“LLM - Feedback", as mentioned in section 2.2, is employed
to generate more personalized feedback.

Another innovative approach involves integrating LLM with
the traditional BKT method. For traditional BKT, we calculate the
probability of mastery given the student’s correctness of the answer,
as illustrated when a student answers correctly:

𝑃 (𝐿 |𝑐𝑜𝑟𝑟𝑒𝑐𝑡) = 𝑃 (𝐿) · (1 − 𝑃 (𝑠𝑙𝑖𝑝))
𝑃 (𝐿) · (1 − 𝑃 (𝑠𝑙𝑖𝑝)) + (1 − 𝑃 (𝐿)) · 𝑃 (𝑔𝑢𝑒𝑠𝑠)

Where:
• 𝑃 (𝐿 |𝑐𝑜𝑟𝑟𝑒𝑐𝑡) is the updated probability of mastery given a
correct answer.

• 𝑃 (𝐿) is the prior probability of mastery.
• 𝑃 (𝑠𝑙𝑖𝑝) and 𝑃 (𝑔𝑢𝑒𝑠𝑠) are the probabilities of slipping and
guessing, respectively.

Incorporating LLMs to consider verbal inputs, we adjust obser-
vation from correctness to LLM’s binary prediction of skill mastery,
𝑃 (𝑝𝐿). The equation below represents the scenario when the LLM
predicts True:

𝑃 (𝐿 |𝑝𝐿) = 𝑃 (𝐿) · 𝑃 (𝑝𝐿 |𝐿)
𝑃 (𝐿) · 𝑃 (𝑝𝐿 |𝐿) + (1 − 𝑃 (𝐿)) · 𝑃 (𝑝𝐿 |¬𝐿)

Where:
• 𝑃 (𝐿 |𝑝𝐿) is the updated probability of mastery based on LLM
prediction.

• 𝑃 (𝑝𝐿 |𝐿) and 𝑃 (𝑝𝐿 |¬𝐿) are the probability of LLM predict-
ing mastery when the skill is mastered and not mastered,
respectively.

𝑃 (𝑝𝐿 |𝐿) and 𝑃 (𝑝𝐿 |¬𝐿) are pre-determined True Positive and
False Positive Rate. This model is likely to offer a more precise
estimation of mastery, given the added understanding of speech.

2.1.1 Evaluation. We plan to conduct within-subject user studies
with approximately twenty adult participants, who will learn prob-
ability with the help of robots. All participants will receive the same
set of questions. We will simultaneously employ three user model-
ing techniques (three conditions) to track progress: the traditional
BKT model, LLM for direct evaluation, and LLM’s binary prediction,
which will serve as input to Bayes’ rule. At the conclusion of the
teaching session, each model will generate predictions about each
participant’s skills. We will then compare the accuracy of these
predictions against the ground truth.

Generating ground truth is challenging, and experienced teach-
ers will be recruited to determine whether students have under-
stood each skill by observing the entire teaching session. Uncertain
predictions should be double-checked by posing questions to the
students after the session.

2.2 LLMs for Robot Feedback
LLMs have the potential to offer personalized feedback to students
by interpreting their speech, thereby addressing each student’s
unique needs and responses. If implemented successfully, this could
significantly enhance teaching efficiency.

The main challenge, however, is ensuring the accuracy of the
feedback. Directly inputting students’ responses into LLMs could
result in “hallucinations" [5], leading to feedback that is either
inaccurate or irrelevant. To counter this, one approach involves
LLM accessing a predefined solution corpus to retrieve personalized
feedback, which reduces but doesn’t eliminate the risk. The most
cautious method selects feedback from a set of predefined options,
which avoids inaccuracies but limits the depth of personalization.
The central research question revolves around finding the optimal
balance between personalization and accuracy.

It is important to note that the feedback discussed above, namely
informational feedback, is not the sole type of feedback that can be
offered. Another aspect worth exploring involves affective feedback,
focusing on how to employ LLMs to mimic human teachers’ praise,
encouragement, comfort, and even criticism—either before, during,
or after providing explanations on solving problems. Although
such feedback can be readily generated through narrowly defined
prompts and few-shot prompting, the effectiveness and strategy
need to be verified beforehand.

LLMs also offer the potential for more nuanced support by pro-
viding continuous assistance throughout the question-solving pro-
cess. Specifically, if a student shows confusion or poses a question
while attempting to solve the problem, the LLM can detect this
state and generate appropriate assistance. However, such advanced
applications must be approached carefully to avoid interrupting the
student’s thought process. The key research question then becomes
how to optimally time the provision of help so that it is perceived
as beneficial and not as an unwelcome interruption.

2.2.1 Evaluation. For feedback generated by LLMs, we are going
to first generate the rejection rate, which includes rejections due to
hallucinations or rejections due to unhelpful/unrelated feedback.
Rejections resulting from hallucinations should be regarded as
significantly more critical than those due to unhelpfulness. This
evaluation could be a preliminary study before conducting a large-
scale user study, allowing us to pre-filter some conditions. We are
planning to recruit at least ten human evaluators who assess or rate
the responses generated by different approaches, with a condition
of human-generated feedback serving as the baseline.

A between-subject study can then assess whether students learn-
ing with LLM-assisted robots outperform those receiving prede-
fined feedback that is either fixed or dependent on their selections
(for multiple-choice questions). Post-study interviews will collect
student feedback on the robot’s effectiveness, while engagement
levels—potentially measured by eye contact with the robot—offer
additional insights into the learning experience.
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